
ALPACA: Application Layer Protocol Confusion -
Analyzing and Mitigating Cracks in TLS Authentication

Marcus Brinkmann1, Christian Dresen2, Robert Merget1, Damian Poddebniak2, Jens Müller1, Juraj
Somorovsky3, Jörg Schwenk1, and Sebastian Schinzel2

1Ruhr University Bochum
2Münster University of Applied Sciences

3Paderborn University

Abstract
TLS is widely used to add confidentiality, authenticity and
integrity to application layer protocols such as HTTP, SMTP,
IMAP, POP3, and FTP. However, TLS does not bind a TCP
connection to the intended application layer protocol. This
allows a man-in-the-middle attacker to redirect TLS traffic
to a different TLS service endpoint on another IP address
and/or port. For example, if subdomains share a wildcard
certificate, an attacker can redirect traffic from one subdomain
to another, resulting in a valid TLS session. This breaks
the authentication of TLS and cross-protocol attacks may be
possible where the behavior of one service may compromise
the security of the other at the application layer.

In this paper, we investigate cross-protocol attacks on TLS
in general and conduct a systematic case study on web servers,
redirecting HTTPS requests from a victim’s web browser to
SMTP, IMAP, POP3, and FTP servers. We show that in
realistic scenarios, the attacker can extract session cookies
and other private user data or execute arbitrary JavaScript in
the context of the vulnerable web server, therefore bypassing
TLS and web application security.

We evaluate the real-world attack surface of web browsers
and widely-deployed email and FTP servers in lab experi-
ments and with internet-wide scans. We find that 1.4M web
servers are generally vulnerable to cross-protocol attacks, i.e.,
TLS application data confusion is possible. Of these, 114k
web servers can be attacked using an exploitable application
server. Finally, we discuss the effectiveness of TLS exten-
sions such as Application Layer Protocol Negotiation (ALPN)
and Server Name Indiciation (SNI) in mitigating these and
other cross-protocol attacks.

1 Introduction

TLS. With Transport Layer Security (TLS) [56], confidential
and authenticated channels are established between two com-
munication endpoints. In typical end-user protocols, such as
HTTP, SMTP, or IMAP, the TLS server authenticates to the

Application ServicesVictim Browser MitM

Origin:
www.bank.com

www.bank.com:443

*.bank.com

ftp.bank.com:990

Cross-Protocol FTPS Response

Origin:
www.attacker.com

Cross-Origin HTTPS Request

POST /
Host: www.bank.com
Cookie: secret
HELP <script>reflect()</script>

Unknown command:
<script>reflect()</script>

*.bank.com

Option 3: Reflection Attack

HTTP/1.1 200 OK
<script>stored()</script>

Option 2: Download Attack

Cookie: secret

Option 1:
Upload Attack

Figure 1: Basic idea behind application layer cross-protocol
attacks on HTTPS. A MitM attacker leads the victim to an
attacker-controlled website that triggers a cross-origin HTTPS
request with a specially crafted FTP payload. The attacker
then redirects the request to an FTP server that has a certificate
compatible with the web server. The attack either (1) uploads
a secret cookie to FTP, or (2) downloads a stored malicious
JavaScript file from FTP, or (3) reflects malicious JavaScript
contained in the request. In case (2) and (3), the JavaScript
code is executed in the context of the targeted web service.

client by presenting an X.509 certificate. In this setting, the
server is identified by the Common Name (CN) field or the
Subject Alternate Name (SAN) extension in the certificate,
which contains one or more hostnames or wildcard patterns
(e.g., *.bank.com). As part of the certificate validation, the
client confirms that the destination of the request matches the
CN or SAN of the certificate.

Since TLS does not protect the integrity of the TCP con-
nection itself (i.e., source IP & port, destination IP & port), a
man-in-the-middle (MitM) attacker can redirect TLS traffic
for the intended TLS service endpoint and protocol to another,
substitute TLS service endpoint and protocol. If the client
considers the certificate of the substitute server to be valid
for the intended server, for example, if wildcard certificates

1

are shared among subdomains, the authentication of the con-
nection is violated. This can enable cross-protocol attacks at
the application layer, where the client unknowingly sends the
protocol data for the intended server to the substitute server
that expects a different protocol, potentially compromising
the security of either server at the application layer.

In general, cross-protocol attacks can be considered be-
tween any two TLS-secured protocols. Although some proto-
col combinations will more likely lead to successful attacks
than others, even wildly different data formats can be inter-
operable. For instance, a length-specified binary protocol
can be embedded in HTTP [53]. The number of potential
attack scenarios exhibits quadratic growth with the number
of application protocols and implementations.

Cross-Protocol Attacks on HTTPS. Cross-protocol at-
tacks on unprotected HTTP were first described by Jochen
Topf [59], and we refer to Section 10 for the history of these
plaintext attacks. The first cross-protocol attack on a web
server secured by TLS was found by Jann Horn (with in-
put from Michał Zalewski) [38], who demonstrates reflected
and stored Cross-Site-Scripting (XSS) attacks using an ex-
ploitable FTP server. Horn considered a MitM attacker who
also has man-in-the-browser (MitB) privileges by serving a
web page with malicious JavaScript to the victim, as shown
in Figure 1. This is the classical attacker model for attacks on
the TLS Record Layer, such as BEAST [19], CRIME [20],
POODLE [45], and Lucky 13 [4]. Using the MitB, the at-
tacker triggers an HTTPS POST request to the target web
server, where the body contains valid FTP commands. Using
the MitM, the attacker redirects the request to an FTP server
with a compatible certificate. The browser completes the TLS
handshake with the FTP server and sends the HTTP request
as application data. If the FTP server is error-tolerant, it may
ignore invalid data such as the HTTP header and execute the
valid FTP commands in the HTTP body. In this example,
the payload is HELP <script>reflect()</script>. An
exploitable FTP server reflects the embedded JavaScript to
the client in an error message. Although the response from
the FTP server is not valid HTTP, an exploitable browser finds
the JavaScript by content sniffing [8] and executes it within
the context of the original request, completing the attack [38].

We note that during this attack, each component (browser,
web server, and application server) functions as expected and
the security violation is an emergent property due to the at-
tacker’s ability to recombine the components in an unintended
way. The root cause is the inability of the TLS authentication
mechanism to prevent the confusion in the first place.

Systematic Analysis. In this work, we investigate cross-
protocol attacks on TLS in general and on HTTPS in par-
ticular with a case study, where we target a web server for
which the user may have established some kind of privileged
session (i.e., the user is logged into an account). For example,
this could be a webmail server (e.g., Roundcube) colocated

with an email server or a content management system (e.g.,
WordPress) colocated with an FTP server. Systematically
extending the above attack example from [38], we consider
cross-protocol attacks on the web server that redirect cross-
origin HTTP requests to SMTP, IMAP, POP3, or FTP servers,
using one of three attack methods: 1. In an upload attack,
the attacker tricks the victim into uploading secret session
data contained in the request (i.e., a cookie). 2. In a down-
load attack, the attacker prepares a stored XSS payload at the
application server and tricks the victim into downloading it.
3. In a reflection attack, the attacker returns a cross-protocol
response with a reflected XSS payload included in the request.
In the two XSS methods, the script executes in the context
of the request and can be used to extract secrets or launch
malicious same-origin requests with the authority of the user,
breaking the security of the web application.

The protocols SMTP, IMAP, POP3, and FTP were selected
because they are line-based text protocols similar to HTTP,
widely deployed on the Internet, likely to be configured with
certificates that are compatible with public web servers, and
mature enough to minimize any potential risks to the infras-
tructure by our internet-wide scans.

Attack variation. Under restrictive conditions, these attacks
can even succeed in a pure web attacker model (MitB, but not
MitM). For this, the application server must have the same
hostname as the web server and the browser must not include
the port number in the Same-Origin-Policy (SOP). For the
majority of this work, we assume a MitM+MitB attacker and
revisit the pure MitB model in Section 8.

Evaluation. In practice, cross-protocol attacks are sensitive
to many requirements, such as certificate compatibility, ability
to upload, download, or reflect data, and application tolerance
towards syntax errors caused by mixing two protocols in
one channel. In our case study of cross-protocol attacks on
HTTPS, using SMTP, IMAP, POP3, and FTP application
servers, we address these concerns in three evaluations.

1. We identified 25 popular SMTP, IMAP, POP3, and FTP
implementations and evaluated their suitability for cross-
protocol attacks on HTTPS in a series of lab experiments.
We found that 13 are exploitable with at least one attack
method (see Table 3). We also implemented a full proof-
of-concept that demonstrates all three attack methods
on a well-secured web server, using exploitable SMTP,
IMAP, POP3, and FTP application servers.

2. We evaluated seven browsers for their error tolerance.
We find that Internet Explorer and Edge Legacy still
perform content sniffing and thus are vulnerable to all
presented attacks, while all other browsers allow at least
FTP upload and download attacks (see Table 1).

3. In an internet-wide scan, we collected X.509 certificates
served by SMTP, IMAP, POP3, and FTP servers. We
analyzed how many of these are likely to be trusted by

2

major web browsers. For each certificate, we extracted
the hostnames in the CN field and SAN extension and
checked if there exists a web server on these hosts. We
found 1.4M web servers that are compatible with at least
one trusted application server certificate, making them
vulnerable to cross-protocol attacks (see Table 4). Of
these, 119k web servers are compatible with an applica-
tion server that is exploitable in our lab settings.

Countermeasures. We present generic countermeasures to
all cross-protocol attacks, based on the ALPN and SNI exten-
sions. These countermeasures solve the issue at the TLS layer
and can be deployed without backward compatibility issues.

Contributions. We make the following contributions:

• The first generic description of cross-protocol attacks
against TLS applications.

• A systematic case study of cross-protocol attacks against
HTTPS, exploiting popular SMTP, IMAP, POP3, and
FTP application servers.

• A complete IPv4 scan for web and application servers
allowing such cross-protocol attacks, measuring the num-
ber of vulnerable and exploitable services.

• Analysis of generic countermeasures to cross-protocol
and related content confusion attacks with minimal
changes to implementations and standards.

Responsible Disclosure and Artifact Availability. We re-
ported our findings to TLS libraries, exploitable application
servers, and our national CERT. We will publish all source
code used in the evaluation of this paper as Open Source at:
https://github.com/RUB-NDS/alpaca-code.

2 Background

2.1 TLS and X.509 Certificates
Transport Layer Security (TLS) is a cryptographic layer be-
tween the transport layer (i.e., TCP) and an application layer
protocol [17]. The TLS protocol consists of two phases. In the
first phase, the client and server perform a TLS handshake to
exchange used versions, randoms, cryptographic algorithms,
and supported extensions, in order to derive symmetric keys.
In the second phase, the symmetric keys are used to protect
application data, such as HTTP, SMTP, IMAP, POP3, or FTP.

STARTTLS. Unprotected legacy protocols can be extended
to support TLS by upgrading a plaintext connection using
a protocol-specific STARTTLS command. After the TLS
handshake succeeds, the legacy protocol is continued in the
encrypted application data. STARTTLS was first standardized
in RFC 2487 [35] as an extension to SMTP.

Server Certificates. In a typical TLS scenario on the web,
a server authenticates to a TLS client with an X.509 certifi-
cate [14] during the handshake. The certificate contains the
server public key (which is used within the handshake), server
domain name, expiration date, and several extensions. For
example, there exist extensions for defining key usage (e.g.,
signing and encipherment), extended key usage (e.g., WWW
server protection), and locating the certificate revocation list.
For the security of the connection, it is crucial that the TLS
client validates all these certificate properties.

Server Name Indication (SNI). In some deployments, sev-
eral web (or other) services may be hosted at the same IP
address and port. To support this virtual hosting configura-
tion, the client indicates the desired hostname in the Server
Name Indication (SNI) extension [22]. While SNI is well-
supported by HTTPS servers, it is much less common in other
application protocols such as SMTP, IMAP, POP3, and FTP.

Application-Layer Protocol Negotiation (ALPN). The
ALPN extension [27] allows the TLS peers to select a specific
application layer protocol. With ALPN, a web server can
offer different application layer protocols on the same port,
for example, more performant versions of the HTTP protocol
(in particular, HTTP/2 along with HTTP/1.1), while avoiding
additional round trips for protocol negotiation. The client
sends the protocols it supports as a list of strings to the server,
and the server selects a protocol it supports or sends an alert
if no protocol supported by the server is found among the
list. Protocol names are presented in ASCII and assigned by
IANA.1 The names for HTTP, IMAP, POP3, and FTP have
already been standardized, while SMTP is not yet registered.

2.2 Application Layer Protocols

HTTP. The Hypertext Transfer Protocol (HTTP) [24] is a
line-based text protocol for the World Wide Web, which is
typically accessed with a browser. Web servers are secured
by TLS and other safeguards to protect sensitive user data.
For example, cookie attributes (e.g., Secure, HttpOnly, or
SameSite) protect authentication tokens, Content Security
Policy (CSP) protects against cross-site scripting attacks, and
the Same Origin Policy (SOP) mitigates cross-domain inter-
action risks, while Cross-Origin Resource Sharing (CORS)
enables sharing across domains in a controlled manner.

Email Protocols and FTP. The Simple Mail Transfer Pro-
tocol (SMTP) [40] is used to send emails. Post Office Pro-
tocol (POP3) [47] and Internet Message Access Protocol
(IMAP) [15] are used to access them. The File Transfer Proto-
col (FTP) is a protocol to upload and download arbitrary files
to a server [52]. All protocols are line-based text protocols.
TLS can be used either explicitly by upgrading an insecure

1https://www.iana.org/assignments/
tls-extensiontype-values/tls-extensiontype-values.xhtml

3

https://github.com/RUB-NDS/alpaca-code
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml

connection using the STARTTLS (or similar) command or
implicitly by connecting on an alternative port. A peculiarity
of the SMTP protocol is that after sending a command, the
client should wait for the server’s response before sending the
next one unless the server supports command pipelining [26].

Note that FTP uses separate connections for control and
data transfer. The client first opens a control connection, then
sends a command to open a data port in the server. Then it
establishes an implicit TLS connection to that port to upload
or download files (aka passive mode). We assume the FTP
server enforces TLS session resumption on the data connec-
tion to protect against well-known port stealing attacks [5]
by binding the data channel cryptographically to the control
channel, as first proposed and implemented by Chris Evans
and Tim Kosse [23].

3 TLS-Based Cross-Protocol Attacks

In a generic cross-protocol attack, we assume a client C and
two application servers Sint and Ssub. The client C uses pro-
tocol A with the intended server Sint . The substitute server
Ssub uses an unrelated protocol B and runs on a different TCP
endpoint (IP, port). However, Ssub has a certificate that is com-
patible with Sint , i.e., the certificate could be used by Sint in
place of its regular certificate without breaking the intended
connection from the client. The goal of the attacker is to
trick either Ssub into accepting application data from C or to
trick C into accepting application data from Ssub. Because C
and Ssub use different protocols, this type of attack is called a
cross-protocol attack. The attack works like this:

1. The man-in-the-middle (MitM) attacker interposes the
TCP connection between C and Sint , and forwards all
data from C to Ssub and vice versa. Optionally, the MitM
first creates a new TLS endpoint on Ssub with START-
TLS and only then forwards the TLS traffic from C.

2. The application server Ssub performs the TLS handshake
with the client C and presents its certificate Certsub.

3. Because Certsub is compatible with Sint , the client C ac-
cepts it and completes the TLS handshake. Subsequently,
C will send application data to Ssub.

4. Ssub tries to interpret the data sent by C. Because the
client sends application data in format A and the Ssub
expects format B, this may result in security violations.

5. If Ssub responds by sending, e.g., error messages to C in
format B, the client processes these as if they were in
format A, which may also result in security violations.

The presented attack breaks the authentication of the connec-
tion in Step 3, when C finishes the handshake with Ssub, as
C is not noticing that it performed the handshake with Ssub

instead of Sint . In this case we say that Sint and Ssub are vul-
nerable to cross-protocol attacks. This loss of authentication
can lead to severe security issues at the application layer and
potentially a loss in confidentiality, for example if Ssub writes
application data to a log file readable by the attacker.

In practice, cross-protocol attacks are hindered by a series
of obstacles. We identify the following requirements for
cross-protocol attacks to be exploitable:

• TLS Compatibility. The client C and application server
Ssub must complete the TLS handshake, and C must
accept the certificate of the substitute server as valid for
the intended server. We provide more details on this
requirement in Subsection 3.1.

• Tolerance To Protocol Embedding. Ssub should tolerate a
certain amount of invalid traffic that comes from protocol
A in which the payload for Ssub in format B is embed-
ded. Likewise, if the client is expected to process any
response by Ssub, it should tolerate a certain amount of
invalid traffic that comes from protocol B in which the
payload for C in format A is embedded.

• Application Server Exploitability. Ssub must provide
some feature, mechanism, or behavior supporting the
attack. The details are protocol- and implementation-
specific, but generally, the exploited behavior will be
unexpected by C and differ considerably from the behav-
ior of Sint , resulting in some form of security violation.

3.1 TLS Compatibility
To enable cross-protocol attacks, the server Ssub must provide
a certificate and TLS configuration that is compatible with the
certificate and configuration of Sint such that C will success-
fully complete a handshake with Ssub in a MitM scenario. We
will now describe the most important requirements for this.

Certificate Names. The client application must accept the
server names in the certificate of Ssub as valid for Sint . This
can be the case for one of two reasons: 1. The certificate pre-
sented by Ssub has the hostname of Sint in the CN field or SAN
extension, or 2. The certificate of Ssub is a wildcard certificate
that matches the hostname of Sint (e.g., *.bank.com matches
www.bank.com). Such configurations occur spontaneously
when an administrator, unaware of the risk of cross-protocol
attacks, deploys a multi-domain or wildcard certificate to
save costs and administrative effort, or simply copies a web
server certificate to another application server to support op-
portunistic encryption without validation, as is common for
non-HTTPS services [36]. Note that for the success of cross-
protocol attacks it is not required that the certificate presented
by Ssub is valid for Ssub itself.

Certificate Validity. The certificate must also satisfy a broad
range of other conditions to be considered valid by C. Most

4

importantly, the certificate must be signed by a certificate
authority trusted by C, and the certificate must not be expired.

Note that there is no possibility to define the designated
application layer protocol in an X.509 certificate. While a
certificate can include an extended key usage extension, this
extension can only indicate a very broad purpose for which
the certified public key may be used [14], for example, code
signing, client/server authentication, or email protection.

TLS Handshake Parameters. The TLS protocol itself can
also cause the attack to fail. In particular, the client C must
support at least one TLS version and cipher suite offered by
Ssub which may differ from those provided by Sint . This is
especially important if the two protocols adopt new versions,
cipher suites, and extensions at different speeds, for example
if the client C deprecates some features before Ssub is updated
to support suitable replacements.

ALPN. If the client C supports the ALPN extension, it will
send only the ALPN identifiers for the intended protocols.
If Ssub is also implementing the ALPN extension, it cannot
choose a matching application layer protocol. In this case, the
ALPN extension mandates to abort the handshake and send a
fatal TLS alert message [27]. Thus, at first glance, this might
prevent the attack. However, ALPN was never considered as
a security feature, but merely as a mechanism to multiplex
different protocols on the same TCP endpoint [27]. If the
substitute server is unaware of ALPN, or the ALPN extension
is not transmitted by C, or a failure in ALPN negotiation is
silently ignored by the server, the handshake proceeds despite
ALPN. We will show in Subsection 7.2 that this is often the
case for servers implementing protocols other than HTTPS.

SNI. A client may specify the server name in the SNI exten-
sion. If Ssub is not responsible for resources on the indicated
server name, it can reject the connection and thus prevent
the attack. However, cross-protocol attacks are not affected
by SNI if two services run under the same name, or if the
substituted server does not implement it, or if the server is
misconfigured. Similar to ALPN, SNI was not specified as
a security feature, but to multiplex different virtual servers
(possibly implementing the same protocol) on the same TCP
endpoint. It is still not widely supported outside of HTTP.
We will show in Subsection 7.2 that servers implementing
protocols other than HTTP often ignore the SNI extension.

4 Cross-Protocol Attacks on HTTPS

We now consider only cross-protocol attacks where the client
C is a web browser using HTTPS. The goal of the attacker is
either to execute JavaScript in the context of the targeted web
server, leading to Cross-Site-Scripting (XSS), or to steal the
session cookie of an already logged in user. After describing
our attacker model, we will discuss specific requirements for
such cross-protocol attacks against HTTPS.

As is common for TLS attacks [4, 19, 20, 45], we consider
a more powerful MitM attacker, who is also a man-in-the-
browser (MitB) with the ability to execute arbitrary JavaScript
in the context of a website controlled by the attacker. The
MitB attacker can force the client to send cross-origin requests
to the targeted web server but is unable to read the response
due to the Same-Origin-Policy (SOP). However, the attacker
can control some parts of the HTTP header, and, in the case
of the POST method, the complete body of the request. In a
simple cross-protocol scenario, the attacker accepts the head-
ers as given and places a malicious payload in the body. If the
substitute server tolerates the HTTP header, it will eventually
reach the body of the request and process the malicious pay-
load, giving the attacker full access to the features provided
by the substitute server protocol and implementation.

4.1 Attack Methods

Through an extensive review of the existing documentation
of browser-related cross-protocol attacks, we identified three
general methods the attacker can use within application layer
protocols to attack HTTPS sessions.

Upload Attack. For this attack, we assume the attacker has
some ability to upload data to Ssub and retrieve it later. In an
upload attack, the attacker tries to store parts of the HTTP
request of the browser (specifically the Cookie header) on
Ssub. This might, for example, occur if the server interprets
the request as a file upload or if the server is logging incom-
ing requests verbosely. After a successful attack, the attacker
retrieves the content on the server independently of the con-
nection from C and retrieves the HTTPS session cookie.

Download Attack – Stored XSS. For this attack, we assume
the attacker has some ability to store data on Ssub and down-
load it. In a download attack, the attacker exploits benign
protocol features to download previously stored (and specifi-
cally crafted) data from Ssub to C. This is similar to a stored
XSS vulnerability. However, because a protocol different
from HTTP is used, even sophisticated defense mechanisms
against XSS, like the Content-Security-Policy (CSP) [64], can
be circumvented. Very likely, Ssub will not send any CSP by
itself, and large parts of the response are under the control of
the attacker.

Reflection Attack – Reflected XSS. In a reflection attack,
the attacker tries to trick the server Ssub into reflecting parts
of C’s request in its response to C. If successful, the attacker
sends malicious JavaScript within the request that gets re-
flected by Ssub. The client will then parse the answer from the
server, which in turn can lead to the execution of JavaScript
in the context of the targeted web server.

5

4.2 Web Browser Tolerance

With reflection and download attacks, the data returned by
Ssub will often not be a proper HTTP response but contain
‘noise’ in the form of a banner identifying the application
server, as well as any syntax errors and other messages output
by the server processing the HTTP request. This is particu-
larly significant for the very beginning of the response, where
the web browser expects an HTTP response status line. If
this line is missing, a browser may assume HTTP/0.9, which
allows a Simple-Response [10, ch. 4.1] that does not contain
any headers. Without headers specifying the content type, the
embedded JavaScript will only be executed if the the browser
interprets the response as HTML due to content-sniffing [8].

4.3 Application Server Error Tolerance

Sending an HTTP request to a non-HTTP server will likely
cause syntax errors due to differences in the protocol lan-
guages. Thus, it is an advantage for the attacker if Ssub is
“liberal” in what it accepts in the sense of Postel’s Law.2

An HTTP request consists of four parts: 1. The HTTP re-
quest line with method, URI, and version, 2. zero or more
key: value header fields, 3. an empty line separating the
header from the body, and 4. the attacker-controlled body of
the request containing the POST data. For a successful attack,
we require that the application server keeps processing com-
mands even after encountering the initial HTTP request line
and up to a certain number of HTTP header lines. Some ap-
plication servers terminate the connection after some number
of syntax errors. If this number is too low (i.e., smaller than
or equal to the number of lines in the header), our attack will
probably fail because the POST data in the request will never
be processed. The exact number of header lines that must be
processed without terminating the connection depends on the
web browser of the victim. For example, Chrome 83 sends 17
header lines as part of a POST request (see Table 1).

Additionally, some application servers (e.g., Postfix SMTP)
specifically try to detect cross-protocol attacks by recognizing
common HTTP method tokens in the request line.

4.4 Advanced Exploitation Techniques

So far, we only considered cross-protocol attacks that contain
a single message exchange. However, the order of the content
of an HTTP request is fixed: first comes the header, potentially
containing a sensitive cookie that the attacker wants to steal,
and then comes the body of the request with the malicious
payload. The attacker has only a few options (such as the
path in the URL and some header lines) to affect the request
content before the critical header line with the cookie. This

2Also called the robustness principle: “be conservative in what you do,
be liberal in what you accept from others.” [51]

Results Chrome
Firefox

IE Edge Legacy

Edge
Opera

Safari

Header Lines 17 11 11 12 17 17 11
Content Sniffing # # # # #
Keep-Alive
w/ HTTP/1.1
w/ noise # # # # # # #

 Support # No support

Table 1: Browser behavior relevant to cross-protocol attacks.

makes some cross-protocol attacks using only a single HTTP
request very challenging.

If the attacker is able to force several HTTP requests within
a single connection, more sophisticated cross-protocol attacks
may become practical. Using multiple requests allows the
attacker to send a malicious payload to Ssub in the first request
to prepare Ssub into a state that allows the second request to
complete the attack. This strategy is especially useful for
upload attacks, where the first request prepares Ssub in such
a way that the cookie in the second request is uploaded to
the server. However, in order to send two HTTP requests
inside a single TLS connection, the browser has to reuse the
connection. We evaluate when this is the case in Section 5.

Even more powerful attacks are possible if Ssub is vulner-
able to a TLS renegotiation attack [55], which allows an
attacker to prepend arbitrary bytes to the victim plaintext data,
bypassing all potential protocol countermeasures and intoler-
ances. This way, application data of the client gets interpreted
in the attacker session such that the attacker can prepare an
arbitrary prefix for transmitted application data.

5 Evaluation of Web Browsers

We evaluated the browser behavior relevant to cross-protocol
attacks for Chrome 86, Firefox 81, Internet Explorer 11, Edge
Legacy 44, Edge 86, Opera 71, and Safari 14 by manually
accessing a custom web server with one test page for each
property under evaluation. The results are shown in Table 1.

Number of Header Lines. For each browser, we determined
how many header lines are included in a typical POST request
sent by the browser. This is also the minimum number of
errors an application server with a line-based text protocol
must tolerate to be usable for cross-protocol attacks. We find
that all browsers send headers that consist of 11 to 17 lines.

Content Sniffing. As described in Subsection 4.2, reflection
and download attacks can be sensitive to noise in the protocol
data returned by the application server. For each browser,
we evaluated if the browser performs content sniffing and
executes embedded JavaScript anyway. We could confirm that

6

this is indeed the case for Internet Explorer and Edge Legacy,
while all other tested browsers do not perform content-sniffing
and thus do not execute JavaScript in noisy responses.

Connection Reuse. As mentioned in Subsection 4.4, sending
more than one request in a single cross-protocol connection
can be advantageous for an attacker. The HTTP/1.1 standard
defines persistent connections between client and server for
multiple HTTP requests by default [24]. Thus, the browser
should reuse the TCP connection as long as the HTTP version
of the server response is at least 1.1 and the server did not send
the HTTP header Connection: close [24, Section 8.1.2.1].

We tested this behavior for Chrome, Edge, Edge Legacy,
Firefox, Internet Explorer, Opera, and Safari. All browsers
reuse the connection after receiving a valid HTTP/1.1 re-
sponse containing at least the Status-Line and a Content-
Length. Chrome, Firefox, and Opera even accept a Status-
Line only consisting of the HTTP-Version without a Status-
Code or a Reason-Phrase. Internet Explorer and Edge require
a complete Status-Line. None of the browsers reuse the con-
nection if the first line of the response does not begin with
the token HTTP. This is relevant for upload attacks relying on
connection reuse that include protocol noise at the beginning
of the response, defeating the goal of sending more than one
request in the same TLS connection.

6 Evaluation of Application Servers

In this section, we demonstrate how cross-protocol attacks
on HTTPS can be executed using SMTP, IMAP, POP3, and
FTP as application servers. We first describe how upload,
download, and reflection attacks can be realized with these
protocols. Then, we analyze 25 popular implementations of
these protocols and evaluate whether they are exploitable by
cross-protocol attacks against HTTPS in at least one browser.

6.1 Attack Strategies

We identified the following attack strategies to realize upload,
download, and reflection attacks on HTTPS using SMTP,
IMAP, POP3, and FTP application servers.

Reflection Attacks. All protocols in our case study are line-
based protocols. They interpret each line of the HTTPS
request as a command and will generate a response for
each. If an implementation receives a command, it may
use some data from the input in its response. For exam-
ple, sending HELP <script>attack();</script> to an
FTP server may lead to the response Unknown command:
<script>attack();</script> (see Figure 1). Usually, as
is the case for SMTP, POP3, and FTP, the availability of such
reflection vectors is an implementation artifact, depending
on the verbosity of error messages and other factors. But in
IMAP, every command must begin with a so-called tag, which

must be reflected to allow the client to match the server re-
sponse to the issued command [15, Section 2.2.1]. Although
this reflection vector is mandated by the protocol standard, the
allowed character set may differ between implementations.

Reflected responses are likely to contain some ‘noise’ be-
fore and after the reflected payload. In this case, the browser
has to support content-sniffing to allow a reflected XSS attack.

FTP Upload and Download Attacks. FTP uses two separate
connections for commands and data. Thus, the MitB attacker
triggers two requests in the browser. The first request changes
the state of the FTP server such that it opens a data port for
the client to upload or download a file. Although the server
returns the number of the data port to the client, that response
is kept in the browser context of the targeted web server and
is not accessible to the attacker. Thus, the attacker has to
brute-force the correct data port on the server just as in a port-
stealing attack [5]. Then the attacker triggers a second request
in the browser and redirects it to the data port. For an upload
attack, the full HTTP request, including any secret cookies
in the header, is stored on the FTP server, where the attacker
has read access. For a download attack, the attacker initially
prepares a valid HTTP response with a malicious JavaScript
payload and stores it on the FTP server. The response is
returned to the client in the download attack.

Note that the two requests triggered by the MitB attacker
do not use the same but different TLS connections, so FTP
upload attacks work independently of connection reuse in
the browser. For download attacks, the response by the FTP
server on the data connection is free of any protocol noise, so
it works in any browser regardless of content-sniffing.

Email Upload Attacks. SMTP and IMAP can be used to
send or save emails to an attacker-controlled email account
and thus are suitable for upload attacks. POP3 does not sup-
port uploading user data.

For SMTP, a MitB attacker can trigger a request in the
browser to log into the attacker’s account on the server and
start submitting an email to that account. For IMAP, the
request logs into the attacker’s account on the IMAP server
and saves a draft email to an attacker-controlled folder. In
either case, the initial request prepares the server into a state
where, if it receives a second browser request reusing the
same connection, the content of the whole request (including
the cookie in the header) would be exfiltrated to the attacker.

Note that the two requests triggered by the MitB attacker
must use the same TLS connections, so email upload attacks
require connection reuse in the browser.

Email Download Attacks. IMAP and POP3 can be used to
download emails from an attacker-controlled email account
and thus are suitable for download attacks. SMTP does not
support downloading data.

For IMAP and POP3, a MitB attacker can trigger a request
in the browser that contains commands to log into the at-

7

tacker’s account on the server, select a mailbox, and fetch
an email containing the malicious payload previously stored
there by the attacker. The response of the IMAP or POP3
server will contain the content of the whole email, including
the email body with the malicious payload.

Note that the responses of the IMAP and POP3 servers
include the whole transaction of the request, including the
server banner, any error messages, and responses to the lo-
gin and other commands, which precede the content of the
downloaded email. In practice, email download attacks only
succeed if the victim browser supports content-sniffing.

6.2 Exploitability of Server Implementations
We identified popular SMTP, IMAP, POP3, and FTP imple-
mentations, based on an Internet-wide banner scan (see Ta-
ble 7 in the appendix). We installed the most current version
of these servers in a lab setting using the default configu-
ration. Then we evaluated them for their exploitability in
cross-protocol attacks against HTTPS by sending messages
over the network and measuring the responses. We tested for:

1. Tolerance to HTTP request lines using the POST method,
by sending the input string POST / HTTP/1.1 as the
first command to the server. If the server did not termi-
nate the connection, it is considered tolerant.

2. Tolerance to HTTP header lines in the key: value for-
mat, by sending Connection: keep-alive as the sec-
ond command to the server. If the server did not termi-
nate the connection, it is considered tolerant.

3. The maximum number of syntax errors that are tolerated
before the connection is terminated, by sending the same
invalid command multiple times in a single session. If
the server answered more than 100 invalid commands,
we concluded that no limitation is implemented.

4. The availability of commands or error messages that
allow reflected XSS attacks, by manual and tool-assisted
exploration of the protocol syntax. We stopped searching
when we found a reflection sufficient for a JavaScript
exploit or when we exhausted the standard command list
for the protocol (including popular extensions).

We did not separately evaluate download and upload at-
tacks because these rely on standard protocol behavior that is
already covered in the general description of these attacks.

6.3 Experimental Results
We evaluated 25 different application servers and their ex-
ploitability in cross-protocol attacks. Note that our list in-
cludes servers like Dovecot and Courier, which implement
both IMAP and POP3. We count these servers twice as their
implementations of these protocols have different properties

Server HTTP Request Tolerant

HTTP Header Tolerant

Max. # of Errors

Reflects ASCII

SM
T

P

Postfix # # 20
Exim 3
Sendmail G#a 25
MailEnable 15b #
MDaemon 3
OpenSMTPD ∞

IM
A

P

Dovecot 3 G#c

Courier 10d
Exchange 3
Cyrus ∞
Kerio Connect ∞
Zimbra ∞

PO
P3

Dovecot 3d G#c

Courier ∞ #
Exchange 3 #
Cyrus ∞ #
Kerio Connect ∞ #
Zimbra ∞e #

FT
P

Pure-FTPd #f ∞
ProFTPD <1.3.5e ∞
ProFTPD ≥1.3.5e # ∞
Microsoft IIS ∞
vsftpd ∞ G#g

FileZilla Sever ∞
Serv-U ∞

 Favorable to attacker.
G# Favorable to attacker with restrictions (see footnote).
No exploit found.
∞ No limit found. Tested with > 100 commands.
a Only with STARTTLS.
b Buffered commands are processed before connection is closed.
c Full XSS payload reflection post-auth.
d Counter is reset after valid command.
e 5 (with possible reset) after auth.
f Tolerant if compiled --with-minimal.
g Only post-auth with write permissions.

Table 2: HTTP header tolerance, error tolerance, and availabil-
ity of commands suitable for reflected XSS in the evaluated
application servers.

with respect to cross-protocol attacks, as is apparent in our
evaluation results. Our list also includes an old version of
ProFTPD as a baseline test. Versions before 1.3.5e are known
to be exploitable by the original cross-protocol attack on
HTTPS by Jann Horn [38], while later versions were patched
to detect these attacks. For each protocol and implementation,
we verified which attack methods can be used with at least
one browser to launch a cross-protocol attack on HTTPS. The

8

evaluation results are given in Table 2 and their exploitability
for cross-protocol attacks is summarized in Table 3.

SMTP. All SMTP servers except Postfix and Sendmail were
tolerant towards HTTP request and header lines. Postfix im-
plements a detection for HTTP requests as well as HTTP
headers. As soon as a command contains an HTTP status
line or a key-value pair separated by a colon, the server will
immediately terminate the connection. Sendmail only detects
HTTP requests at the very start of a connection. If START-
TLS is used, the first command inside the connection can be
sent by the attacker, bypassing the detection.

Except OpenSMTPD, all tested SMTP implementations
abort after a maximum number of errors. This is surpris-
ing, because the SMTP standard demands that a server must
not close the connection in response to an unknown com-
mand [40]. A special case regarding the allowed maximum
number of errors is MailEnable as it allows only 15 errors,
but continues processing all remaining buffered commands
before terminating the connection.

All SMTP servers except MailEnable allowed at least one
XSS reflection vector.

IMAP. All IMAP servers were tolerant towards HTTP request
and header lines.

With regards to the number of allowed errors, Courier im-
plements a counter that resets after receiving a valid com-
mand. In this evaluation, we mark Courier as not sufficiently
error tolerant to allow cross-protocol attacks. However, a
more sophisticated attacker might be able to bypass this by
inserting valid commands disguised as HTTP headers in the
request, resetting the error counter. The inserted header must
be CORS-safe [46] in order to avoid a preflight request sent
by the browser. An example header to reset the error counter
would be Accept: noop, where Accept: is interpreted as
the IMAP tag and noop as the IMAP command. We did not
evaluate if the attacker can position such a header within the
first ten lines of the request in common browsers.

Zimbra (POP3) allows unlimited errors but only before
authentication. Post-authentication, the server will terminate
after five errors. As authentication in cross-protocol attacks
occurs within the body of the HTTP request, which is com-
pletely controlled by the attacker, no errors are expected after
authentication due to protocol noise. Therefore, this does not
affect the attack. Of the other IMAP servers, only Exchange
enforced a limit on the number of errors. With Dovecot IMAP,
a full XSS payload reflection is only possible post-auth us-
ing the command SELECT or STATUS for IMAP. All other
IMAP servers had pre-auth commands usable for reflection.

POP3. All POP3 servers were tolerant towards HTTP request
and header lines.

Dovecot POP3 implements a counter that resets after valid
commands. However, with only three consecutive errors
allowed, and the restrictions of the POP3 protocol, it seems

highly unlikely that an attacker can bypass the error limit by
inserting attacker-controlled header lines to reset the counter.

As for reflection, Dovecot POP3 allows XSS reflection
only post-authentication using an unknown command. For all
other POP3 servers we could not find any reflection vectors.

FTP. Two FTP servers could detect and block HTTP requests.
If a command to these servers starts with an HTTP status line,
the servers immediately close the connection.

All FTP servers tolerated an arbitrary number of errors
without terminating the connection.

All FTP servers, except vsftpd, had at least one command
that allowed reflection before authentication. In vsftpd, a user
with write permission can reflect ASCII post-authentication
using the command MKDIR.

Exploitability of Servers. We now summarize our results
with respect to each attack scenario and browser (see Table 3).

Five FTP servers were exploitable in an upload attack with
any browser. Two secure servers, Pure-FTPD and ProFTPD,
were able to detect HTTP headers and thus prevent all HTTP
cross-protocol attacks. For SMTP and IMAP upload attacks,
no tested server was exploitable because the server response
is not a valid HTTP/1.1 response line. As discussed in the
previous section, the missing HTTP/1.1 response line prevents
the browsers from reusing the TLS connection.

Three IMAP servers and four POP3 servers were ex-
ploitable in a download attack with a browser supporting
content-sniffing. Five FTP servers were exploitable in a down-
load attack with any browser. Secure IMAP and POP3 servers
were not error tolerant enough to allow a successful attack.

Nine application servers were exploitable in a reflection
attack with a browser supporting content-sniffing. Two out
of these servers were exploitable with some technical restric-
tions: Sendmail was only exploitable on a STARTTLS port,
and vsFTPd requires an attacker having write permission on
the FTP server. Servers that were not exploitable in a re-
flection attack either blocked HTTP requests (Postfix and
ProFTPD ≥ 1.3.5), were not sufficiently error tolerant, or did
not provide a reflection vector in any of the tested commands.
As a special case, OpenSMTPD is not tolerant to HTTPS re-
quests or other batched multi-line input due to missing support
for command pipelining.

In total, 13 of 25 evaluated application servers can be ex-
ploited with at least one attack method in at least one browser.

6.4 Lab Setup
To demonstrate that the exploitable application servers ac-
tually can be used in fully working attacks on HTTPS, we
created a lab setup containing proof-of-concepts for each pro-
tocol and attack method from our evaluation. In particular, the
lab contains Sendmail 8.16.1 (SMTP), Cyrus 2.4.17 (IMAP),
Courier 1.0.6-1 (POP3), and vsftpd 3.0.2 (FTP). The lab is
based on the containerization software Docker, and contains

9

Attack Method

Server Upload
Download

Reflection

HTTPS

SM
T

P

Postfix #a - #b

Exim #a - #b

Sendmail #a - G#e 11,365
MailEnable #a - #
MDaemon #a - #b

OpenSMTPD #a - #c

IM
A

P

Dovecot #a #b #b

Courier #a #b #b

Exchange #a #b #b

Cyrus #a 14,029
Kerio Connect #a 7,852
Zimbra #a 9,578

PO
P3

Dovecot - #b #b

Courier - # 30,759
Exchange - #b #
Cyrus - # 9,079
Kerio Connect - # 4,501
Zimbra - # 7,927

FT
P

Pure-FTPd #d #d #d

ProFTPD <1.3.5e � � 13,481
ProFTPD ≥1.3.5e #d #d #d

Microsoft IIS � � 19,817
vsftpd � � G#f 7,211
FileZilla Server � � 1,555
Serv-U � � 1,429

Total Unique 114,197

� Exploitable in all browsers.
 Exploitable with content sniffing (IE, Edge Legacy).
G# Exploitable with content sniffing (IE, Edge Legacy), with some

limitations described in footnote.
No exploit found.
- Attack method not applicable.
a Not exploitable because no browser reuses the connection.
b Not exploitable due to too many errors with all browsers.
c Not exploitable due to lack of command pipelining.
d Not exploitable due to HTTP detection.
e Exploitable on all ports except 465 (implicit TLS).
f Exploitable if attacker can login with write permission.

Table 3: Summary of our evaluation of application servers for
each attack method. The last column shows the number of
affected HTTP servers from our scan (see Subsection 7.2).

an attack server and a web server with a website to attack. We
configured publicly reachable domains and valid certificates
from Let’s Encrypt and implemented an actual MitM attacker
capable of relaying and altering traffic as well as injecting
additional packages. We then implemented working FTP
download and upload attacks on vsftpd for all browsers, as
well as reflection and download attacks for Cyrus IMAP, a

download attack for Courier POP3, and a reflection attack
for Sendmail in combination with Edge Legacy and IE. The
attacks are implemented in Python. The complete lab setup,
including all proof of concept attacks, is available on Github.3

7 Large Scale TLS Study

We evaluated the number of HTTPS servers which are vul-
nerable to cross-protocol attacks with SMTP, IMAP, POP3,
or FTP in an internet-wide scan of the IPv4 address space by
looking for servers with trusted, compatible certificates. Addi-
tionally, we analyzed how these servers react to invalid server
names with SNI and how they react if they cannot choose a
valid application layer protocol with ALPN.

7.1 Methodology
In order to evaluate how many application servers have trusted
certificates compatible with HTTPS servers, we conducted
multiple IPv4 scans on standard and well-known application
ports for SMTP (25, 587, 465, 26, 2525), IMAP (143, 993),
POP3 (110, 995), and FTP (21, 990) between July and Oc-
tober 2020, using ZMap [21] and ZGrab 2.0.4 We excluded
all hosts that could not complete a TLS handshake. We then
determined which of these servers have a trust path to a gener-
ally trusted root CA. We considered a CA as generally trusted
if it is trusted by either Mozilla, Google, Microsoft, Apple,
Oracle, or OpenJDK. We then gathered all trusted certificates
and extracted their Common Names (CN) and Subject Alter-
native Names (SAN) in order to find corresponding HTTPS
servers. For entries that contained a *, we guessed the sub-
domain by replacing * with www. We then tried to connect to
these hostnames on port 443 using the HTTPS protocol and
collected the presented certificates.

We performed two more scans on those SMTP, IMAP,
POP3, and FTP application servers that offered a trusted cer-
tificate. In the first scan, we estimated the number of applica-
tion servers that tolerate incorrect SNI hostnames by perform-
ing a TLS handshake with the SNI hostname example.com.
We recorded if the TLS handshake completes successfully
despite the mismatching hostname. In the second scan, we
estimated the number of application servers that tolerate in-
correct application layer protocols by performing a TLS hand-
shake with the same ALPN extension as sent by the Chrome
web browser. We recorded if the TLS handshake completes
successfully despite the mismatching protocol identifiers.

7.2 Results of Internet-Wide Scans
The results of our scans can be seen in Table 4. Across all pro-
tocols, 62,85% of the discovered TLS application servers used

3https://github.com/RUB-NDS/alpaca-code
4https://github.com/zmap/zgrab2

10

https://github.com/RUB-NDS/alpaca-code
https://github.com/zmap/zgrab2

Server IPs with TLS Certificate Names (CN & SAN)

Protocol Port STARTTLS Total Valid Certificate # Unique # HTTPS

SMTP 25 Yes 3,427,465 1,744,052 (50,88%) 1,048,090 782,710 (74.68%)
SMTP 587 Yes 3,495,626 2,471,893 (70,71%) 1,176,374 821,534 (69.85%)
SMTPS 465 - 3,511,544 2,450,062 (69,77%) 1,046,240 724,557 (69.27%)
SMTP 26 Yes 565,672 514,425 (90,94%) 130,624 79,234 (60.66%)
SMTP 2525 Yes 231,009 139,536 (60,40%) 50,514 31,009 (61.40%)

IMAP 143 Yes 3,707,577 2,463,293 (66,44%) 1,103,455 782,410 (70.92%)
IMAPS 993 - 3,919,999 2,597,232 (66,26%) 1,287,370 926,313 (71.97%)

POP3 110 Yes 3,551,226 2,342,545 (65,96%) 983,912 690,111 (70.15%)
POP3S 995 - 3,828,411 2,580,379 (67,40%) 1,170,197 848,744 (72.56%)

FTP 21 Yes 4,826,891 2,130,271 (44,13%) 675,432 421,923 (62.48%)
FTPS 990 - 305,646 282,382 (92,39%) 115,292 95,197 (62.73%)

Total 31,371,066 19,716,070 (62,85%) 2,088,328 1,441,628 (69.03%)

Table 4: Results from our internet-wide scan by protocol and port (July to October 2020). We first give the number of IP
addresses that provide the given service and allow a successful TLS handshake to be made. Then we show the number of those
IP addressses that offer a certificate that is considered valid for a browser (except for hostname matching). Next we give the
number of unique names found in the CN and SAN of the valid certificates. Finally, we give the number of HTTPS servers we
found among these names, with * replaced by www as the most common guess for web servers using wildcard certificates.

generally trusted certificates. A notable outlier is FTP on port
21, where the number of trusted certificates was only 44%.
A possible explanation is that FTP server certificates are of-
ten signed by private CAs that are not generally trusted by
browsers. We found that about 25% of the untrusted FTP
certificates were signed by such private CAs.

TLS Version. Previous studies analyzing the TLS ecosystem
have shown that servers running SMTP, IMAP, or FTP do
not offer timely TLS protocol support [6, 36, 44]. Running
a service with outdated TLS versions can negatively affect
the cross-protocol attack execution because current browsers
support TLS 1.2 and TLS 1.3 only.

Our scan does not include servers supporting only TLS 1.3
due to lack of support in the version of ZGrab we used, but we
suspect that the number of such exclusive servers is marginal
among the long-established protocols we analyzed. Our scans
show that across all analyzed protocols, 90% to 96% of the
scanned application servers with trusted certificates support
TLS 1.2, while the rest only support older versions. This
means that successful attack exploitation can fail in at most
10% of these servers due to missing support for TLS 1.2.

ALPN and SNI. We removed all host responses from the
data set for which the handshake was either successful or
could be attributed to an unrelated error (such as connection
timeout), and were left with a marginal number of hosts which
potentially rejected the TLS handshake because of the ALPN
or SNI extension. Depending on the protocol and port, we can
give an upper bound for servers potentially supporting ALPN
or SNI correctly below 0.5%. We conclude that ALPN or SNI
do not pose an obstacle to cross-protocol attacks today.

Web Servers Vulnerable to Cross-Protocol Attacks.
Across all analyzed protocols, we collected a total number of
2,088,328 distinct hostnames. Our search for HTTPS servers
on those hostnames revealed a total of 1,441,628 HTTPS
servers for which at least one SMTP, POP3, IMAP or FTP
server exists that was using a generally trusted certificate,
which is 69% of all the unique hostnames scanned. Of these
web servers, 24,202 were in the Tranco 1M list [42] of the
most prominent hosts on the Internet.5 This means that for
the majority of the servers with trusted certificates on SMTP,
POP3, IMAP, or FTP, there exists an HTTPS server with
a compatible certificate vulnerable to a general TLS cross-
protocol attack, where application data is processed by the
substitute server rather than the intended web server.

Vulnerable Web Servers Paired With Exploitable Appli-
cation Server. Based on our banner scan (see Appendix A),
we counted all unique web servers (among the 1.4M can-
didates) for which we could identify at least one applica-
tion server that was exploitable in our lab setting (see right-
most column of Table 3 in Section 6). Sometimes the same
web server is exploitable by several application servers (e.g.,
IMAP and POP3), so the total number of unique web servers
is smaller than the sum over all protocols.

In total, we found 114,197 unique web server hostnames
that can be attacked using an exploitable SMTP, IMAP, POP3,
or FTP server with a trusted and compatible certificate.

5Downloaded on 2020-10-11.

11

Chrome
Firefox

IE Edge Legacy

Edge
Opera

Safari

SMTPS (465) # # # # #
IMAPS (993) # # # # # # #
POP3S (995) # # # # #
FTPS (990)

Port blocked Port not blocked

Table 5: Some ports available to a MitB attacker by browser.

8 Cross-Protocol Attacks without MitM

So far, we have assumed the scenario of an active MitM,
which is a reasonable attacker model for attacks on TLS. In
this section, we discuss necessary conditions in order to adapt
the presented attacks to a pure MitB scenario. In this attacker
model, the attacker forces the victim browser to send a HTTP
request directly to a different application server that, as far as
the browser is concerned, belongs to the same security context
as the targeted web server based on the origin of the request.
Besides requiring a weaker attacker model, this attack method
offers several advantages: 1. Certificate cross-compatibility
is no longer a requirement because the client validates the
server’s actual certificate. 2. SNI no longer influences the
attack, as the extension contains the correct server name.

However, in a MitB-only setting, where the attacker can no
longer redirect traffic to a different hostname and port other
than the intended as seen by the browser, several web-related
restrictions exist, namely lack of STARTTLS support, port
blocking in the browser, and the Same-Origin Policy.

STARTTLS Usage. Because a pure MitB attacker cannot
upgrade a non-TLS connection to a secure one (by sending a
STARTTLS command), the attack can only work with servers
using implicit TLS (SMTPS, IMAPS, POP3S, FTPS).

Port Blocking. As a workaround to counter early cross-
protocol attacks [13, 59] in 2001, browsers block access to
specific well-known ports. An excerpt is given in Table 5.

As expected, most browsers block access to ports used
by SMTP, IMAP, POP3, and FTP, with some exceptions.
For example, port 990 is not blocked in any tested browsers,
so cross-protocol attacks exploiting FTPS are still possible.
Furthermore, Edge Legacy and Internet Explorer do not block
port 465 (SMTPS) and 995 (POP3S), allowing cross-protocol
attacks exploiting these services. On the other hand, these
browsers do block access to the plaintext (non-TLS) variants
of these protocols at port 25 (SMTP) and 110 (POP3).

Therefore, due to port blocking, most of our attacks do not
work in a pure web attacker scenario unless a service runs
on a non-standard port. In practice, this is not unrealistic, as
services are frequently deployed on non-standard ports for a
variety of administrative reasons.

Chrome
Firefox

IE Edge Legacy

Edge
Opera

Safari

sa
m

e
do

m
ai

n,
di

ff
er

en
tp

or
t

DOM access # # # # #
Get cookie
Set cookie

su
b

do
m

ai
n,

di
ff

er
en

tp
or

t

DOM access # # # # # # #
Get cookie G# G# G# G# G# G# G#
Set cookie

 access blocked # access denied G# cookie dependent

Table 6: SOP interpretation in different browsers.

Same-Origin Policy. Another obstacle to deal with in a pure
web attacker model is cross-site limitations due to the Same-
Origin Policy (SOP) [58, 61], including cookie policies (see
Table 6). DOM access from one origin (identified by a
protocol://host:port tuple) to a different origin is not
allowed. However, Edge Legacy and Internet Explorer ignore
port numbers in the SOP. For example, host:995 (POP3S)
has access to host:443, thereby allowing DOM manipula-
tion (i.e., reading or writing website content, inserting script
tags, etc.). Furthermore, technologies such as CORS [32]
exist to punch holes into the SOP. According to Müller [48],
around 0.15% of the Alexa Top 1M websites are misconfig-
ured to allow cross-site requests with session cookies.

The SOP is more lax when it comes to cookies. As spec-
ified in RFC 6265 [7], cookies are not port-dependent. For
example, host:995 can access the cookies for host:443 in
all tested browsers. Read access to cookies for subdomains
is only possible if the Domain flag is explicitly set. Cahn
et al. [11] crawled the Alexa Top 100k websites and found
that this is the case for 81.5% of the cookies, including all
subdomains. However, their work did not focus on session
cookies, where the numbers may be lower. Policies for setting
cookies are even less strict, as a subdomain is allowed to set
a cookie for the top domain. For example, pop3.host:995
can set a cookie for host:443 in all browsers, which can lead
to session fixation attacks [41], where the attacker locks the
user into a session already controlled by the atacker before
the user even logs in.

8.1 Practical Example
As a proof of concept demonstration, we registered an account
at Mailfence, a security-focused email provider. As MitB, we
posted HTML form data to https://mailfence.com:995
to log into our account and retrieve the content of an HTML
email (download attack), resulting in JavaScript execution in
the context of https://mailfence.com for browsers that
ignore the port number in the SOP, such as Internet Explorer.
The issue was acknowledged by the vendor as stored XSS. We

12

found similar exploitable issues in the MitB attacker model,
in a major bitcoin exchange, the website of a large university,
and the Government of India’s webmail service.6

9 Countermeasures

Countermeasures at the Application Layer. Previous ef-
forts to stop cross-protocol attacks tried to mitigate the issue at
the application layer, for example, by closing the connection
if HTTP is detected instead of a valid command. From a prac-
tical point of view it is unreasonable to expect implementers
to be aware of all (including future) possible cross-protocol
attacks and defend against them one by one.

While such measures can potentially stop the exploitation
of individual protocol confusions, they cannot stop the attack
in general. Whenever a client finishes the handshake with
Ssub, the authentication as promised by TLS has already been
broken. At this point, no application data has been exchanged
yet, therefore no application layer countermeasure can prevent
the general cross-protocol attack.

Countermeasures with TLS Certificates. A common pro-
posal is to use different (incompatible) certificates for differ-
ent service endpoints. However, enforcing such a policy is
challenging in practice. Certificate validation is limited to
hostnames, and thus each service would have to be hosted on
a unique subdomain. Furthermore, no certificate should be is-
sued for more than one hostname, which effectively prohibits
the use of wildcard certificates. However, the very common
use of wildcard certificates in practice shows that they pro-
vide significant value to administrators. Even strict certificate
exclusivity does not prevent all possible attacks. The attacker
could still steal the cookie using a service hosted on a subdo-
main or perform session fixation attacks (see Section 8).

Another idea would be to define different certificate usages
for distinct services. While the X.509 standard defines the ex-
tended key usage extension [14], this extension only allows to
distinguish TLS server certificates from those used for email
signing, IPsec, or OCSP, and does not provide a mechanism
to authenticate the application protocol on top of TLS.

We conclude that the required organizational and behav-
ioral changes to achieve certificate exclusivity are so large
that they can only be considered a long term countermeasure.

ALPN Mitigates All Cross-Protocol Attacks.
In 2015, Horn suggested the use of ALPN by protocol de-

signers to mitigate cross-protocol attacks. We now describe
how this countermeasure can be implemented in a backwards
compatible way. If ALPN is supported by both client and
server, the standard requires that the connection is closed if
no common protocol can be negotiated. This strict implemen-
tation mitigates all cross-protocol attacks, because a client

6All tested services encourage researchers to search for security bugs and
we followed their requirements for responsible disclosure.

and the substitute server implementing a different protocol
than the client will never complete a TLS handshake.

Today, we see different levels of ALPN support deployed.
For HTTPS, all major clients already implement ALPN to sup-
port HTTP/2, so deploying ALPN in exploitable application
servers will prevent our attacks on HTTPS. In an internet-
wide scan we found that 72.5% of HTTPS servers already
support ALPN. Although this is promising, we also found
that less than 1.3% terminate the connection if no protocol
can be negotiated. We have also shown in our scans that virtu-
ally all SMTP, IMAP, POP3, and FTP servers do not support
ALPN or do not terminate if no protocol can be negotiated.

As a path forward, we propose that initially servers start
to implement ALPN strictly according to the standard, so
connections created by clients sending the ALPN extension
(i.e., browsers) are protected from exploitation. In parallel,
clients for all protocols (SMTP, IMAP, POP3, and FTP) can
be upgraded to send the ALPN extensions. Migrating to this
secure configuration is easy and backwards-compatible, as
the clients and servers can independently enable the extension
on their respective side at some convenient time, while still
accepting legacy connections. Once a client and an applica-
tion server have both enabled ALPN, that particular server
can no longer be exploited to attack connections by that client
to other, vulnerable servers in the network.

Eventually, clients and servers may choose to require the
use of ALPN by the other side, at the cost of breaking back-
wards compatibility with legacy implementations.

Countermeasures with SNI. The same way the ALPN ex-
tension protects against cross-protocol attacks, the SNI ex-
tension can protect against cross-hostname attacks, if it is
implemented strictly (ie., the connection is terminated if no
matching host is found), which is allowed by the standard.
This can protect against cross-protocol attacks where the in-
tended and substitute server have different hostnames, but also
against some same-protocol attacks such as HTTPS virtual
host confusion [16] or context confusion attacks [65].

Unfortunately, some servers are currently not entirely
aware of the hostnames they are responsible for. Adding
a strict SNI validation to those servers can cause connections
to break if hostnames are missing or clients are misconfigured.
Still, we recommend enabling strict SNI checking if possible,
in particular for new configurations.

Same-Host, Same-Protocol, Cross-Port Attacks. Even
with strict ALPN and SNI implementations, we still face po-
tential confusion attacks when the intended and substitution
server have the same hostname, implement the same proto-
col, but run on different ports. These cross-port attacks can
currently not yet be mitigated at the TLS layer, because there
is no way for the client to communicate the intended port
number to the server. Defining such a feature, for example as
a new TLS extension, is certainly possible, but would require
an upgrade to all TLS libraries and applications.

13

10 Related Work

Early cross-protocol attacks were found in cryptographic sys-
tems. Kelsey, Schneier and Wagner [39] described how new
protocols can be designed to allow such attacks on existing
protocols, forshading some of the problems occurring when
key material, certificates, or cryptographic protocols (such as
TLS) are reused for different applications. They also gave ba-
sic principles for protocol design to avoid such issues. Their
work was expanded by Canetti et al. [12], who considered the
environmental requirements for authentication protocols and
showed that even strong protocols can fail for external reasons.
For TLS, cryptographic cross-protocol attacks were examined
in [62], [43] and [6] (DROWN). Nir and Gueron [18] ana-
lyzed a similar weakness in TLS 1.3 PSK where the client
is running a server with the same pre-shared key as the in-
tended server. In their “Selfie” attack, the attacker redirects
the messages from the client C back to its own server without
the client noticing that confusion.

A first example for an application layer cross-protocol at-
tack was described by Topf [59], who showed how to send
emails via SMTP over HTTP from an HTML form. He recog-
nized this as a way to access intranet services behind a firewall.
A first systematization of these attacks was provided by Al-
corn [1] and subsequently extended to demonstrate the impact
on internal networks behind firewalls in [2] (inter-protocol
exploitation) by giving an attack on the Asterisk Manager In-
terface through HTTP. Other authors applied these techniques
to attack UPnP [31], FTP [54], IMAP [50], and Redis [33]
servers in internal networks, often paired with other vulnera-
bility exploits to achieve remote code execution. Other works
discussed how to to send commands to network printers [63]
or spam [34] from HTML websites. The most recent sum-
mary was given by Prynn [53] who also showed how HTTP
can be combined with binary protocols. Common to these
works is that they give no consideration to TLS and that they
are attacking the protocol wrapped inside the HTTP proto-
col, rather than the HTTP server. These attacks were also
considered in the design of HTTP/2 [9].

A simple XSS attack against web servers with colocated
services vulnerable to reflection attacks was described by
Gauci [29, 30]. The first structured presentation of the XSS
attack scenario was presented by Alcorn [1]. Horn presented
a first example for a JavaScript download attack using FTP
over HTTPS as a MitM attacker in a bug report against the
ProFTPD FTP sever [37], which is the first time that TLS
application data confusion was used to enable cross-protocol
attacks. Horn also pointed out a vulnerability in vsftpd and a
potential vulnerability in Dovecot IMAP, and suggested the
use of ALPN to mitigate the attacks [38]. In their study on
printer attacks, Müller et al. showed how to use cross-site
printing to spoof CORS headers and thus get access to data
from a different origin [49].

Another line of research considered attacks on TLS appli-

cation data confusion within the same protocol, rather than
different protocols. Delignat-Lavaud and Bhargavan [16]
analyzed how a MitM can exploit HTTPS virtual hosting con-
figurations, and Zhang et al. [65] found even more HTTPS
MitM attacks, exploiting insecure web security policies in the
substitute server or mixing TLS with plaintext content.

While our attacks require a strong attacker with MitM and
MitB capabilities, such attacker model is typical when tar-
geting the TLS protocol. The scenario was first described
by Rizzo and Duong in their BEAST attack to exploit pre-
dictable CBC (cipher block chaining) initialization vectors
in TLS 1.0 [19]. In order to retrieve secret data, the BEAST
attacker runs a JavaScript in victim’s browser to trigger care-
fully created requests to the server. The attacker observes
the encrypted requests, whose structure leaks information
about the secret data. This attacker model was later used in
CRIME [20], Lucky 13 [4], POODLE [45], and attacks on
RC4 [3,28,60]. In Lucky 13 and POODLE, the MitM attacker
also actively modifies the TLS traffic as in our attack.

11 Conclusions

We demonstrated that the lack of strong authentication of ser-
vice endpoints in TLS can be abused by attackers to perform
powerful cross-protocol attacks with unforeseeable conse-
quences. Our internet-wide scans showed that it is common
for administrators to deploy compatible certificates across
multiple services, possibly without consideration to cross-
protocol attacks. We also showed that cross-protocol attacks
are practical, although the impact is limited and difficult to
assess from lab experiments alone. In the real-world, cross-
protocol attacks will always be situational and target individ-
ual users or groups. However, it is also clear that existing
countermeasures are ineffective because they do not address
all possible attack scenarios.

We have identified one countermeasure that is far superior
to others: the pervasive use of the ALPN extension to TLS by
both client and server. Luckily, ALPN is easy to deploy with
the next software update without affecting legacy clients or
servers.

In a broader sense, this work demonstrates yet again that all
cryptographic measures, when applied to real world applica-
tions, should be bound to the context of their legitimate use to
prevent confusion attacks on the protected content. Binding
the TLS connection to a specific application layer protocol
allows peers to protect themselves against any known and
unknown cross-protocol attack. With SNI, this protection
can be extended to same-protocol attacks on different host-
names. These countermeasures make sure that a message for
the intended protocol is not mistaken for a message in the sub-
stituted protocol, as demanded by the Rule of Thumb 5 in [12]
for safeguarding authentication protocols against environmen-
tal threats. However, we have also seen that services that
share the same hostname and protocol can not be protected

14

against confusion attacks by existing TLS standards.
Our work can be extended in different directions. We have

only studied the vulnerability of HTTPS to cross-protocol at-
tacks based on FTP and email protocols. Other cross-protocol
attack scenarios and protocol combinations need to be ana-
lyzed. This does not only include text-based protocols, as
similar cross-protocol attacks can be applicable to binary
protocols as well. Our attacks work because of the lack of au-
thentication between TLS and the application layer protocols.
Similar problems can arise in other cryptographic protocols,
such as DTLS [57] or IPsec [25].

Acknowledgements

Marcus Brinkmann was supported by the German Federal
Ministry of Economics and Technology (BMWi) project
“Industrie 4.0 Recht-Testbed” (13I40V002C). Robert Mer-
get was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy - EXC 2092 CASA - 390781972. We also
thank our shepherd Zakir Durumeric as well as our anony-
mous reviewers for improving the final version of the paper.

References

[1] Wade Alcorn. Inter-protocol communication,
2006. https://web.archive.org/web/
20111229080404/http://www.bindshell.net/
papers/ipc.html (accessed 2019-06-26).

[2] Wade Alcorn. Inter-process exploitation,
2007. https://www.nccgroup.trust/
globalassets/our-research/uk/whitepapers/
inter-protocol_exploitation.pdf (accessed
2019-06-26).

[3] Nadhem AlFardan, Daniel J. Bernstein, Kenneth G. Pa-
terson, Bertram Poettering, and Jacob C. N. Schuldt. On
the security of rc4 in TLS. In Samuel Talmadge King,
editor, 22nd USENIX Security Symposium (USENIX
Security 13), pages 305–320, Washington D.C., USA,
August 14–16, 2013. USENIX Association.

[4] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky
Thirteen: Breaking the TLS and DTLS Record Proto-
cols. IEEE Symposium on Security and Privacy, 0:526–
540, 2013.

[5] M. Allman and S. Ostermann. FTP Security Considera-
tions. RFC 2577 (Informational), May 1999.

[6] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,
M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A. Hal-
derman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels,
C. Paar, and Y. Shavitt. DROWN: Breaking TLS Using

SSLv2. In 25th USENIX Security Symposium (USENIX
Security 16), pages 689–706, Austin, TX, August 2016.
USENIX Association.

[7] A. Barth. HTTP State Management Mechanism. RFC
6265 (Proposed Standard), April 2011.

[8] A. Barth, J. Caballero, and D. Song. Secure content
sniffing for web browsers, or how to stop papers from
reviewing themselves. In 2009 30th IEEE Symposium
on Security and Privacy, pages 360–371, 2009.

[9] M. Belshe, R. Peon, and M. Thomson (Ed.). Hyper-
text Transfer Protocol Version 2 (HTTP/2). RFC 7540
(Proposed Standard), May 2015.

[10] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
Transfer Protocol – HTTP/1.0. RFC 1945 (Informa-
tional), May 1996.

[11] Aaron Cahn, Scott Alfeld, Paul Barford, and Shanmu-
gavelayutham Muthukrishnan. An empirical study of
web cookies. In Proceedings of the 25th International
Conference on World Wide Web, pages 891–901, 2016.

[12] Ran Canetti, Catherine Meadows, and Paul Syverson.
Environmental Requirements for Authentication Proto-
cols. In Software Security — Theories and Systems,
pages 339–355. Springer Berlin Heidelberg, 2003.

[13] CERT Coordination Center. Vulnerability note
vu#476267, 2001.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Hous-
ley, and W. Polk. Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard), May 2008.

[15] M. Crispin. INTERNET MESSAGE ACCESS PRO-
TOCOL - VERSION 4rev1. RFC 3501 (Proposed
Standard), March 2003.

[16] Antoine Delignat-Lavaud and Karthikeyan Bharga-
van. Network-based Origin Confusion Attacks against
HTTPS Virtual Hosting. In Proceedings of the 24th
International Conference on World Wide Web. Interna-
tional World Wide Web Conferences Steering Commit-
tee, may 2015.

[17] T. Dierks and E. Rescorla. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard), August 2008.

[18] Nir Drucker and Shay Gueron. Selfie: reflections on
TLS 1.3 with PSK. Cryptology ePrint Archive, Report
2019/347, 2019. https://eprint.iacr.org/2019/
347.

15

https://web.archive.org/web/20111229080404/http://www.bindshell.net/papers/ipc.html
https://web.archive.org/web/20111229080404/http://www.bindshell.net/papers/ipc.html
https://web.archive.org/web/20111229080404/http://www.bindshell.net/papers/ipc.html
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/inter-protocol_exploitation.pdf
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/inter-protocol_exploitation.pdf
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/inter-protocol_exploitation.pdf
https://eprint.iacr.org/2019/347
https://eprint.iacr.org/2019/347

[19] Thai Duong and Juliano Rizzo. Here come the ⊕ Ninjas.
Ekoparty security conference, 2011.

[20] Thai Duong and Juliano Rizzo. The crime attack.
Ekoparty security conference, 2012.

[21] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
Zmap: Fast internet-wide scanning and its security appli-
cations. In 22nd USENIX Security Symposium (USENIX
Security 13), pages 605–620, Washington, D.C., August
2013. USENIX Association.

[22] D. Eastlake 3rd. Transport Layer Security (TLS) Ex-
tensions: Extension Definitions. RFC 6066 (Proposed
Standard), January 2011.

[23] Chris Evans. vsFTPd-2.1.0 released, 2009.
https://scarybeastsecurity.blogspot.com/
2009/02/vsftpd-210-released.html (accessed
2020-10-15).

[24] R. Fielding (Ed.) and J. Reschke (Ed.). Hypertext Trans-
fer Protocol (HTTP/1.1): Message Syntax and Routing.
RFC 7230 (Proposed Standard), June 2014.

[25] S. Frankel and S. Krishnan. IP Security (IPsec) and In-
ternet Key Exchange (IKE) Document Roadmap. RFC
6071 (Informational), February 2011.

[26] N. Freed. SMTP Service Extension for Command
Pipelining. RFC 2920 (Internet Standard), September
2000.

[27] S. Friedl, A. Popov, A. Langley, and E. Stephan. Trans-
port Layer Security (TLS) Application-Layer Protocol
Negotiation Extension. RFC 7301 (Proposed Standard),
July 2014.

[28] Christina Garman, Kenneth G. Paterson, and Thyla Van
der Merwe. Attacks only get better: Password recov-
ery attacks against rc4 in TLS. In Jaeyeon Jung and
Thorsten Holz, editors, 24th USENIX Security Sympo-
sium (USENIX Security 15), pages 113–128, Washing-
ton D.C., USA, August 12–14, 2015. USENIX Associa-
tion.

[29] Sandro Gauci. Extended HTML Form Attack,
2002. https://eyeonsecurity.org/papers/
extendedformattack.html (accessed 2019-10-18).

[30] Sandro Gauci. The Extended HTML
Form attack revisited, 2008. https:
//dl.packetstormsecurity.net/papers/web/
the-extended-html-form-attack-revisited.
pdf (accessed 2020-09-26).

[31] Gnucitizen.org. Hacking the interwebs,
2008. https://www.gnucitizen.org/blog/
hacking-the-interwebs/ (accessed 2019-07-09).

[32] W3C Web Hypertext Application Technology Working
Group et al. CORS Protocol, 2018.

[33] Nicolas Grégoire. Trying to hack Redis via HTTP
requests, 2014. https://www.agarri.fr/blog/
archives/2014/09/11/trying_to_hack_redis_
via_http_requests/index.html (accessed 2019-
10-14).

[34] Robert Hansen. Javascript spam, 2007. http://web.
archive.org/web/20090913204859/http://ha.
ckers.org/blog/20070325/javascript-spam.

[35] P. Hoffman. SMTP Service Extension for Secure SMTP
over TLS. RFC 2487 (Proposed Standard), January
1999.

[36] Ralph Holz, Johanna Amann, Olivier Mehani, Matthias
Wachs, and Mohamed Ali Kâafar. TLS in the wild:
an internet-wide analysis of TLS-based protocols for
electronic communication. In NDSS 2016, pages 1–
15, 2016. Network and Distributed System Security
Symposium 2016, NDSS’16 ; Conference date: 21-02-
2016 Through 24-02-2016.

[37] Jann Horn. HTTPS/FTPS protocol confusion
leads to XSS (ProFTP Bug 4143), 2014. http://
bugs.proftpd.org/show_bug.cgi?id=4143#c0
(accessed 2019-06-26).

[38] Jann Horn. Two cross-protocol MitM attacks
on browsers, 2015. https://var.thejh.net/
http_ftp_cross_protocol_mitm_attacks.pdf
(accessed 2020-08-27).

[39] John Kelsey, Bruce Schneier, and David Wagner. Pro-
tocol interactions and the chosen protocol attack. In
Security Protocols, pages 91–104. Springer Berlin Hei-
delberg, 1998.

[40] J. Klensin. Simple Mail Transfer Protocol. RFC 5321
(Draft Standard), October 2008.

[41] Mitja Kolšek. Session fixation vulnerability in web-
based applications. Acros Security, 7, 2002.

[42] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, February 2019.

[43] Nikos Mavrogiannopoulos, Frederik Vercauteren, Ves-
selin Velichkov, and Bart Preneel. A Cross-protocol
Attack on the TLS Protocol. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12, pages 62–72, New York, NY, USA,
2012. ACM.

16

https://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html
https://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html
https://eyeonsecurity.org/papers/extendedformattack.html
https://eyeonsecurity.org/papers/extendedformattack.html
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://www.gnucitizen.org/blog/hacking-the-interwebs/
https://www.gnucitizen.org/blog/hacking-the-interwebs/
https://www.agarri.fr/blog/archives/2014/09/11/trying_to_hack_redis_via_http_requests/index.html
https://www.agarri.fr/blog/archives/2014/09/11/trying_to_hack_redis_via_http_requests/index.html
https://www.agarri.fr/blog/archives/2014/09/11/trying_to_hack_redis_via_http_requests/index.html
http://web.archive.org/web/20090913204859/http://ha.ckers.org/blog/20070325/javascript-spam
http://web.archive.org/web/20090913204859/http://ha.ckers.org/blog/20070325/javascript-spam
http://web.archive.org/web/20090913204859/http://ha.ckers.org/blog/20070325/javascript-spam
http://bugs.proftpd.org/show_bug.cgi?id=4143#c0
http://bugs.proftpd.org/show_bug.cgi?id=4143#c0
https://var.thejh.net/http_ftp_cross_protocol_mitm_attacks.pdf
https://var.thejh.net/http_ftp_cross_protocol_mitm_attacks.pdf

[44] Wilfried Mayer, Aaron Zauner, Martin Schmiedecker,
and Markus Huber. No need for black chambers: Test-
ing TLS in the e-mail ecosystem at large. CoRR,
abs/1510.08646, 2015.

[45] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE bites: exploiting the SSL 3.0 fall-
back, 2014. https://www.openssl.org/~bodo/
ssl-poodle.pdf.

[46] Mozilla MDN. Cross-Origin Resource Sharing (CORS)
- Simple Requests, 2020.

[47] J. Myers and M. Rose. Post Office Protocol - Version 3.
RFC 1939 (Internet Standard), May 1996.

[48] J. Müller. CORS misconfigurations
on a large scale, 2017. https://
web-in-security.blogspot.com/2017/07/
cors-misconfigurations-on-large-scale.
html (accessed 2021-02-09).

[49] J. Müller, V. Mladenov, J. Somorovsky, and J. Schwenk.
Sok: Exploiting network printers. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 213–230,
2017.

[50] Michele Orrù. Revitalizing the Inter-
Protocol Exploitation with BeEF Bind, 2012.
https://blog.beefproject.com/2012/11/
revitalizing-inter-protocol.html (accessed
2019-07-09).

[51] J. Postel. DoD standard Transmission Control Protocol.
RFC 761 (Historic), January 1980.

[52] J. Postel and J. Reynolds. File Transfer Protocol. RFC
959 (Internet Standard), October 1985.

[53] Tanner Prynn. Cross-protocol request forgery, 2018.
https://www.nccgroup.trust/globalassets/
our-research/us/whitepapers/2018/cprf-1.
pdf (accessed 2019-10-14).

[54] Antonio Quina. Inter-protocol commu-
nication - exploitation, 2012. https:
//www.secforce.com/blog/2012/11/
inter-protocol-communication/ (accessed
2019-07-09).

[55] Marsh Ray and Steve Dispensa. Renegotiating
TLS, 2009. https://web.archive.org/web/
20091122081325/https://extendedsubset.
com/Renegotiating_TLS.pdf (accessed 2021-02-
09).

[56] E. Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. RFC 8446 (Proposed Standard), August
2018.

[57] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347 (Proposed Stan-
dard), January 2012.

[58] Jörg Schwenk, Marcus Niemietz, and Christian Mainka.
Same-origin policy: Evaluation in modern browsers. In
26th USENIX Security Symposium (USENIX Security
17), pages 713–727, 2017.

[59] Jochen Topf. The HTML form protocol attack,
2001. Published on the Bugtraq mailing list on 2001-
08-15. https://www.jochentopf.com/hfpa/hfpa.
pdf (accessed 2019-10-18).

[60] Mathy Vanhoef and Frank Piessens. All your biases
belong to us: Breaking rc4 in wpa-tkip and TLS. In
Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX
Security Symposium (USENIX Security 15), pages 97–
112, Washington D.C., USA, August 12–14, 2015.
USENIX Association.

[61] W3C. Same-Origin Policy, 2010. https://www.
w3.org/Security/wiki/Same_Origin_Policy
(accessed 2021-02-09).

[62] David Wagner and Bruce Schneier. Analysis of the SSL
3.0 protocol. In Proceedings of the 2nd Conference
on Proceedings of the Second USENIX Workshop on
Electronic Commerce - Volume 2, WOEC’96, pages
4–4, Berkeley, CA, USA, 1996. USENIX Association.

[63] Aaron Weaver. Cross-site printing, 2007. http:
//web.archive.org/web/20090919174421/http:
//www.net-security.org/dl/articles/
CrossSitePrinting.pdf.

[64] Mike West. Content Security Policy Level 3, 2018.
https://www.w3.org/TR/CSP3/ (accessed 2021-02-
09).

[65] Mingming Zhang, Xiaofeng Zheng, Kaiwen Shen,
Ziqiao Kong, Chaoyi Lu, Yu Wang, Haixin Duan,
Shuang Hao, Baojun Liu, and Min Yang. Talking with
familiar strangers: An empirical study on https context
confusion attacks. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security. ACM, oct 2020.

17

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://blog.beefproject.com/2012/11/revitalizing-inter-protocol.html
https://blog.beefproject.com/2012/11/revitalizing-inter-protocol.html
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/cprf-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/cprf-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/cprf-1.pdf
https://www.secforce.com/blog/2012/11/inter-protocol-communication/
https://www.secforce.com/blog/2012/11/inter-protocol-communication/
https://www.secforce.com/blog/2012/11/inter-protocol-communication/
https://web.archive.org/web/20091122081325/https://extendedsubset.com/Renegotiating_TLS.pdf
https://web.archive.org/web/20091122081325/https://extendedsubset.com/Renegotiating_TLS.pdf
https://web.archive.org/web/20091122081325/https://extendedsubset.com/Renegotiating_TLS.pdf
https://www.jochentopf.com/hfpa/hfpa.pdf
https://www.jochentopf.com/hfpa/hfpa.pdf
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
https://www.w3.org/TR/CSP3/

A Application Server Banner Scan

During our Internet-wide scan, we collected all banners from
those application servers that could complete a TLS hand-
shake. We used this data to identify the vendor of the de-
ployed application server. In each banner, we replaced all
non-letters by whitespace, lowercased all letters, and split at

the word boundary. Then we replaced important multi-word
sequences by single tokens, removed all single-letter tokens
and removed tokens based on a stop list. We iterated manually
through the most frequent tokens, and either assigned them to
an implementation or to the stop list, until the identification
was stabilized based on a 100k test set. The results are shown
in Table 7.

Pos. SMTP (25) SMTP (587) SMTPS (465) SMTP (26) SMTP (2525)

1. Postfix
35.58% (1,219,598)

Exim
56.13% (1,962,165)

Exim
56.82% (1,995,277)

Exim
96.07% (543,451)

Exim
60.80% (140,457)

2. (unknown)
27.15% (930,442)

Postfix
17.65% (617,110)

(unknown)
18.86% (662,308)

(unknown)
2.01% (11,397)

(unknown)
26.78% (61,870)

3. Exim
21.94% (752,034)

(unknown)
17.28% (603,951)

Postfix
17.61% (618,519)

Postfix
1.30% (7,376)

Postfix
7.91% (18,284)

4. Idea
4.96% (170,099)

Idea
4.85% (169,679)

Idea
4.83% (169,545)

Microsoft
0.26% (1,443)

Microsoft
3.63% (8,377)

5. Microsoft
4.55% (156,046)

Microsoft
1.63% (56,930)

MailEnable
0.54% (18,978)

Sendmail
0.24% (1,363)

MailEnable
0.43% (999)

6. Sendmail
1.79% (61,188)

Sendmail
1.49% (51,981)

Sendmail
0.42% (14,888)

MailEnable
0.08% (438)

Sendmail
0.36% (832)

7. Sendinblue
1.71% (58,628)

Host Europe
0.41% (14,187)

Host Europe
0.40% (14,180)

(Gateway)
0.02% (139)

MDaemon
0.05% (107)

8. Sophos SMTP
0.84% (28,726)

MailEnable
0.22% (7,765)

(no banner)
0.19% (6,806)

MDaemon
0.01% (58)

OmniTI Ecelerity
0.02% (37)

9. MailEnable
0.60% (20,545)

MDaemon
0.13% (4,682)

MDaemon
0.14% (4,860)

OpenSMTPD
0.00% (4)

(Gateway)
0.01% (22)

Pos. IMAP (143) IMAPS (993) POP3 (110) POP3 (995) FTP (21) FTPS (990)

1. Dovecot
86.60% (3,210,657)

Dovecot
83.11% (3,258,031)

Dovecot
88.73% (3,150,958)

Dovecot
82.31% (3,151,001)

Pure-FTPd
59.91% (2,891,862)

ProFTPD
55.88% (170,796)
< 1.3.5e:
55,28% (168,966)
≥ 1.3.5e:
0.09% (271)

2. Courier
6.38% (236,394)

Courier
6.75% (264,591)

Courier
5.65% (200,557)

(unknown)
6.15% (235,525)

(unknown)
16.72% (806,999)

(unknown)
15.71% (48,009)

3. (unknown)
3.81% (141,183)

(unknown)
5.45% (213,581)

(unknown)
2.98% (105,776)

Courier
5.47% (209,594)

ProFTPD
15.86% (791,621)
< 1.3.5e:
6.69% (333,985)
≥ 1.3.5e:
0.43% (21,400)

Microsoft FTP
11.49% (35125)

4. Microsoft
0.95% (35,352)

(no banner)
1.26% (49,544)

Microsoft Exchange
0.87% (31,029)

(no banner)
3.19% (122,098)

Microsoft FTP
3.28% (158,344)

FileZilla Server
10.55% (32,250)

5. Cyrus
0.37% (13,775)

Microsoft
1.01% (39,643)

Cyrus
0.33% (11,576)

Microsoft Exchange
0.69% (26,337)

vsFTPd
1.18% (56,735)

SurgeFTP
2.61% (7991)

6. Kerio Connect
0.31% (11,661)

Cyrus
0.45% (17,674)

Zimbra
0.26% (9,196)

Mailenable
0.56% (21,543)

FileZilla Server
0.78% (37,485)

Serv-U FTP
2.53% (7,740)

7. Zimbra
0.26% (9,687)

Kerio Connect
0.41% (16,083)

Kerio Connect
0.24% (8,657)

Cyrus
0.34% (13,082)

Fritz!Box
0.44% (21,217)

vsFTPd
0.47% (1,425)

8. kasserver.com
0.23% (8,597)

Zimbra
0.29% (11,224)

kasserver.com
0.24% (8,654)

Zimbra
0.24% (9,044)

Serv-U FTP
0.42% (20,303)

Pure-FTPd
0.39% (1,190)

9. Training System
0.23% (8,467)

kasserver.com
0.22% (8,637)

Bigfoot
0.19% (6,634)

Kerio Connect
0.23% (8,958)

Synology
0.25% (12,130)

Wing FTP
0.34% (1,036)

Table 7: Most popular application servers by protocol and port number from our banner scan. Only servers that complete a TLS
handshake are included. For ProFTPD, we also give numbers for known exploitable and fixed versions [37] (rest is unknown).

18

	Introduction
	Background
	TLS and X.509 Certificates
	Application Layer Protocols

	TLS-Based Cross-Protocol Attacks
	TLS Compatibility

	Cross-Protocol Attacks on HTTPS
	Attack Methods
	Web Browser Tolerance
	Application Server Error Tolerance
	Advanced Exploitation Techniques

	Evaluation of Web Browsers
	Evaluation of Application Servers
	Attack Strategies
	Exploitability of Server Implementations
	Experimental Results
	Lab Setup

	Large Scale TLS Study
	Methodology
	Results of Internet-Wide Scans

	Cross-Protocol Attacks without MitM
	Practical Example

	Countermeasures
	Related Work
	Conclusions
	Application Server Banner Scan

